
©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

© Vector Software, Inc. © Vector Software, Inc. © Vector Software, Inc. © Vector Software, Inc. © Vector Software, Inc. © Vector Software, Inc.

VectorCAST Presentation
AdaEurope 2017

Advanced safety strategies for DO178C certification
Massimo Bombino, MSCE

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

>>>> Software Quality Overview

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

QUALITY HAZARDS IN AVIONICS INDUSTRY

1. Software is blamed for more major business problems than any other man-made
product.

2. Poor software quality has become one of the most expensive topics in human
history: > $150 billion per year in U.S.; > $500 billion per year world wide.

3. Projects cancelled due to poor quality >15% more costly than successful projects
of the same size and type.

4. Software executives, managers, and technical personnel are regarded by many
CEO’s as a painful necessity rather than top professionals.

5. Improving software quality is a key topic for all industries, and it’s mandatory for
AVIONICS

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

TESTING: A REAL SOLUTION?

TESTING REQUIRES A LOT MONEY AND TIME:

• Significant effort into the software lifecycle (up to 70-80%)

• DO-178 Low-level testing is much more expensive than developing (2-3 times bigger!)

• Code changes daily, “Continuous Integration” is a myth (up to 100 times than your computational power)

TRADITIONAL TESTING COULD BE INEFFECTIVE:

• Best organizations have 1-5 bugs per KLOC, 25% Critical (1M LOC has >1000 bugs, > 250 critical bugs)

• Could you measure the effectiveness of your testing? (Coverage is a necessity)

TESTING REQUIRES GREAT SKILLS:

• Typical testers are highly skilled and expensive, often developers (average testing costs are up to 2€ x LOC)

• Testing for engineers is a boring activity (> 50% of testers are unsatisfied and plan new activity or job)

NOT TESTING IS A BIGGER COST:

• Do you quantify your risk of not testing? (Your Technological Debt “iceberg” is >10 times than expected)

• Your final customers are the most expensive “testers” (> 1000 bigger than early detection)

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

>>>> DO-178 Verification Strategy Overview

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Software
DO-178

Hardware
DO-254

System Development

ARP 4754A

Safety
Assessment
ARP 4761

• Criticality Level

• Architectural
Inputs SW Rqmts HW Rqmts

Tests Tests

Avionics Development Ecosystem

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

> Level A: 71 Objectives (30with independence)

> Level B: 69 Objectives (18 with independence)

> Level C: 62 Objectives (5 with independence)

> Level D: 26 Objectives (2 with independence)

> Level E: No Objectives (just prove you are Level E!)

Key Principle: DO-178B Objectives by Level

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

DO-178C SW production lifecycle

System
Requirements

High-Level
Requirements

Design
Low-Level

Requirements
Software

Architecture

Source Code

Executable
Object Code

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

DO-178 Objectives per phase

System
Requirements

High-Level
Requirements

Design
Low-Level

Requirements
Software

Architecture

Source Code

Executable
Object Code

Table A-3
Obj. 1-7

Table A-4
Obj. 1-13

Table A-5
Obj. 1-9

Verification
Process

Table A-6
Obj. 1-5

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Analysis

Tests

Reviews

DO-178C: Verification Pyramid Foundation

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Verification Reviews
Tests

&
Analysis

“The Verification Equation”

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Test Implementation - Developing the Test

> Organization

> Planning

> Test
⁻ Procedures

⁻ Cases

⁻ Strategies to test or
analyze requirements and
achieve desired code
coverage

Test Case Test Case Test Case

Test
Procedure

Test
Procedure

Test
Procedure

Test Planning

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

int F (int P)
{
if (P > 0)
return P+1;

else
return P-4;

}

P = 3

EXPECTED/CORRECT OUTPUT OF FUNCTION F ?
a) 4
b) -1
c) NOT ENOUGH INFO

Requirement-Based Testing: QUIZ!

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Test Cases

> Normal Range Tests
⁻ Normal conditions and inputs

⁻ In range inputs, normal events interrupts, normal state transitions, normal logic
processing

> Robustness Tests
⁻ Abnormal conditions and inputs

⁻ Out of range inputs, unexpected interrupts and state transitions, exception handling,
system initialization

> Performance Tests/Analyses (can be part of Robustness)

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Test Environments

> Software testing activities that may be used to achieve the
DO-178 software testing objectives:
o Low-level testing: To verify the implementation of low-level requirements and of the

basic functionalities of your system

o Software integration testing: To verify the interrelationships between software
requirements and components and to verify the implementation of the software
requirements and software components within the software architecture.

o Hardware/software integration testing: To verify correct operation of the software in
the target computer environment.

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Test Case Levels

> Low
⁻ Low Level Requirements

⁻ Unit/Module Testing

> Intermediate
⁻ Software Integration Tests

⁻ Test Simulators

> High
⁻ Hardware Software Integration Tests

⁻ Target Environment

R
eq

u
ir

em
en

ts

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Code Coverage via Low Level Testing

> Advantages
⁻ Tests detailed (design) requirements

⁻ Tests can be done independently in parallel

⁻ Does not require expensive test equipment

⁻ Easier to target particular code areas

> Disadvantages
⁻ More testing required

⁻ Only tests an isolated part of code

⁻ Tests can be contrived

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Code Coverage via High Level Testing

> Advantages
⁻ Tests software functional requirements

⁻ More coverage per test

⁻ More realistic, useful tests

> Disadvantages
⁻ Tests harder to setup

⁻ Some classes of errors harder to target

⁻ Tests results require more analysis

⁻ Need tools to determine structural coverage

⁻ Harder to plan up front what coverage provided

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Code Coverage via Analysis

> Advantages
⁻ May be less expensive to setup

⁻ Does not require tools or code

⁻ Instrumentation

> Disadvantages
⁻ More labor intensive

⁻ Needs to be repeated each time code changes/tests rerun

⁻ Can be less rigorous (error-prone and tedious process)

⁻ Hard to prove, & few people do it right …

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Low Level Testing

> Algorithm Failures
> Incorrect Loop Operations
> Incorrect Logic Decisions
> Failure to Process Correct Input

combinations
> Incorrect Response to bad Input

data
> Incorrect Exception Handling
> Incorrect Computation Sequence

> Inadequate Algorithm Precision,
Accuracy, Performance

Software
Integration

Testing

> Incorrect initialization of variables

> Parameter passing errors

> (Global) Data Corruption

> Inadequate Numerical Resolution

> Incorrect Sequencing of Events
and Operations

Hardware/Software
Integration Tests

 Incorrect Interrupt Handling

 Miss Timing Requirements

 Hardware transient Errors

 Resource Contention

 BIT Detection Errors

 Bad feedback Loops

 Incorrect Device Control

 Stack Overflow

 Incorrect Load Version Verification

 Software Partitioning Violations

Error Detection Objectives

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

>>>> DO-178 Advanced Verification & Testing

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

How to satisfy DO-178 with best testing strategy and tools

Customer
Requirements

High-Level
Requirements

Design

Low-Level
Requirements

Software
Architecture

Source Code

Executable Object
Code

Unit Testing
Tool

Coverage
Tool

2) Unit/Module/Integration
Regression Test

3) System & Functional Test ->
Coverage (up to 80-90%)

5) Final 100%
Coverage

Manage Tool
Aggregate testing & cover report
Metrics, KPIs (dashboard)
Change-based Testing (Impact Analysis)
Continuous Testing
Parallel Testing

4) Stubbing or Analysis for Coverage holes
(defensive programming, maintenance code,
deactivated code, error handling)

Static Analysis
Tool

1) Static
Analysis

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

C, C++, Ada Embedded Integration Testing

System TestingUnit Testing Integration Testing

Individual units or modules are tested. It
involves testing of source code by
developers.

Individual modules are grouped together
and tested. The purpose is to determine
that modules are working as expected
once they are integrated.

Testing is performed on the whole
system by checking whether the system
or application meets the requirement
specification document.

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Code Coverage

100%
Coverage
Achieved

Functional Test Unit Test

Driver Units Stubs

Code Coverage

60%-70%
Coverage
Achieved

30%-40%
Coverage
Achieved

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

On-Target Embedded Unit Testing

Host Environment Target/Simulator

Runtime Support Package

Test Harness

Tests

parse raw
source code

auto generate
all drivers
and stubs

PASS
FAIL
PASS
PASS

100% Coverage

Test
Reports

Execute
Tests

Pass/Fail Results
and

Code CoverageEthernet, Serial Link, JTAG

Source Code

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Change Based Testing

> Comparing changes is key to assessing risk

> Determine if a code change affects other parts of the system

> Prioritize tests based on risk, change, and criticality of modules
> Change-based testing permits prioritized tests of modified modules

> Regression testing ensures changes do not introduce new faults

A.cpp

ATest1
ATest2
ATest3
ATest4
ATest5

ATest6
ATest7
ATest8
ATest9
ATest10

ATest11
ATest12
ATest13
ATest14
ATest15

B.cpp

BTest1
BTest2
BTest3
BTest4
BTest5

BTest6
BTest7
BTest8
BTest9
BTest10

BTest11
BTest12
BTest13
BTest14
BTest15

C.cpp

CTest1
CTest2
CTest3
CTest4
CTest5

CTest6
CTest7
CTest8
CTest9
CTest10

CTest11
CTest12
CTest13
CTest14
CTest15

CTest1
CTest2
CTest3
CTest4
CTest5

ATest6
ATest7
ATest8
ATest9
ATest10

BTest11
BTest12
BTest13
BTest14
BTest15

CTest11
CTest12
CTest13
CTest14
CTest15

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Change Based Testing – “Test Less”, “Fail Faster”

Source
Code

Unit Tests

Automatic detection of which test cases have been affected by a source change

Source Change

Test Cases to be re-run

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Continuous Testing Agile / Test Driven Development

Test Harness
Build

Test Cases

Write
Application

Code

Test Pass?

Test Pass?

Y

N

Y

N

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Parallel Testing

> Jenkins
> Jenkins to allow for continuous integration and test

> Perfect for large projects with many users and a lot of tests

> Overnight or complete application test execution can be reduced from days to hours

> Impact of Change analysis can be performed on the master project, greatly reducing the time
it takes to identify regression errors

> Speeds overall project testing time and reduces late-in-the-project side effects

> Wind River Simics
> Massively parallel testing

> Used together with CI and VectorCAST

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Parallel Testing

> User controlled execution of tests on clusters
> Local or remote

> Real or virtualized

> Windows, Linux, or Solaris

Coding

Architecture

Requirements
Specification

System
Design

System
Testing

Integration
Testing

Unit
Testing

Manage

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Where are you with your Test Process?

Static
Analysis

Code
Coverage

Unit
Testing

Requirements
Testing

Integration
Testing

Regression
Testing

Continuous
Testing

Change Based
Testing

Dashboard

Know
What

Code Is
Tested

Auto
Generate

Test
Code

Map Tests to
Requirements

– ensure all
requirements

are tested

Combined
Subsystem

Testing

Re-Run All
Tests
when
Code

Changes

Continuous
Testing -
Test as

each line of
code is

written –
start testing

early

Only test
what code

has
changed to
get faster

results

Continuously
Measure and

show your
metrics and

KPIs

Check Code
Definitions

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

>>>> Reduction of the Technological Debt

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

TECHNOLOGICAL DEBT

Source: Deloitte University Press
Technological Trends 2014

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

TECHNOLOGICAL DEBT

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

 Technical Debt: a burden for innovation
 What is? An euphemism referring to the risk in production and potential rework

assumed in software development
 Due to the rush and other factors, a lack of quality in deployed software developments

is allowed
 It is normal that resources or quality are limited in every product (with infinite time and

budget, everything is possible!)
 BUT in EVERY business world and in any professional field, the debt MUST be

known or predictable, so that it can be managed, avoiding going bankrupt
 So why Technical Debt is apparently IGNORED even in AVIONICS?

 Insist on this debt can also lead to technical bankruptcy
 Technical debt spends the entire budget for new projects and ends up being a

tremendous drag on innovation

Technical Debt is the greater risk in a DO-178 Project

TECHNOLOGICAL DEBT

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

 Technological debt and DO-178
 The risk of prototyping & iterating

 The risk of «compliance»

 Last minute changes

 Different configuration/customer/product

TECHNOLOGICAL DEBT

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

 RISK REDUCTION TECHNIQUES
 GAP Analysis

 Assess the status of the code for current projects

 Project Ranking

 Higher to lower risk

 Size

 Maintenance status

 Problem Reports (open and total)

 Availability of talent to support debt remediation

 Action Plans based on priorities

 Understanding and managing the technical debt hidden
in the code means to eliminate the risk it generates.

TECHNOLOGICAL DEBT

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

TECHNOLOGICAL DEBT: NEED YET ANOTHER DASHBOARD?

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

Analytics Dashboard for Metrics and KPIs

©
 V

ec
to

r
So

ft
w

ar
e,

 In
c.

©

 V
ec

to
r

So
ft

w
ar

e,
 In

c.

> Quality:
> How to measure? Metrics (Static Analysis, Coverage, McCabe, other KPIs)

> How to improve? Correct verification strategy (Review, Requirement–based Testing)

> How to maintain? Continuous Testing, Change-based Testing

> Costs:
> How to predict? Metrics (Requirements #, automated coverage, other KPIs)

> How to reduce? Early bug detection by Requirement-Based Testing (TDD), Change-
Based testing

> Impacts:
> How to reduce the impact of first software version?

Requirement Based Testing (TDD), Low-level requirements, 100% Coverage

> How to reduce the impact of last minute software changes?

Baselining, Change-based Testing, Parallel testing

Solving problems in modern avionics

